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Scalar-Vector Topological Soliton 
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We present classical scalar-vector equations which admit soliton solutions in 
three space dimensions. Exact spherical solutions are obtained which are 
everywhere regular and resemble charged particles of finite self-energy. The 
corresponding 4-current is identically conserved and leads to quantized charges. 
The scale of the soliton is unique and determined by boundary conditions, 
which also ensure its topological stability. 

1. INTRODUCTION 

It is well known that for a scalar field theory in more than one spatial 
dimension, time-independent soliton solutions do not exist. This is 
Derrick's (1964) theorem. Accordingly, the interesting search for soliton 
solutions in real 3D space should either employ multidimensional, time-de- 
pendent solutions or fields of nonzero spin (see, e.g., Rajaraman, 1982; 
Guidry, 1991). Soliton solutions are usually classified into two groups: 
topological and nontopological. Topological solitons are those which owe 
their stability to nontrivial boundary conditions and topology, while the 
stability of nontopological solitons is dynamical and is not associated with 
boundary conditions. Vortex lines of Nielsen and Olesen (1973) and 
magnetic monopoles of 't Hooft (1974) and Polyakov (1974) are examples 
of topological solitons. For the nontopological solitons the reader is 
referred to Lee (1981) and Rajaraman (1982). 

In this paper, we introduce scalar-vector field equations which are 
designed to meet the following properties: 

1. Relativistic covariance. 
2. Existence and conservation of a 4-current. 
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3. Existence of singularity-free, 3D topological solitons with quantized 
charges. 

4. Inverse square field intensity of the charged soliton at large dis- 
tances. 

5. Existence of  antisolitons with opposite charges. 

The conserved current is not a Noether current and does not emerge 
as a result of  an underlying symmetry. Despite its resemblance to some of  
the work on properties of  charged particles, the present work is to be 
considered as an exercise in mathematical physics and not as a physical 
theory. 

2. FIELD EQUATIONS 

We start from the relativistic equations 

O~G~ p = 4re jp  
r 

OV 
= 

in which 

(1) 

(2) 

G ~a = d~B # - daB ~ (3) 

where B ~ (ct = 0, 1, 2, 3) is a vector field, and 

~b = ( - ~ba~ba)~/2 (4) 

where q~" (a = 1, 2, 3) is an isovector or a three-component scalar field (i.e., 
each component is invariant under Lorenz transformations). The potential 
V(~b) is chosen as 

v ( ~ )  = ~ (~  - 40 )  6 (5)  

and the four-current Ja is defined according to 

In equations (5) and (6), 4, ~bo, and x are all real, positive constants, and 
E "at6 is the Levi-Civita tensor (E~b"=E~ j a  is easily shown to be 
conserved identically 

cOaJa = 0 (7) 

We could adopt the equation [] 2~b" = O V/dc~ instead of  (2), but this would 
prevent us from the simple analytical treatment of  the next section. 
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Our choice of the metric tensor is g~  = diag( 1, - 1, - 1, - 1) through- 
out this paper. 

We also define J ~ =  (cp, J) and B~= (~, A). 
With the definition (3) for G "~, the following homogeneous equation is 

also satisfied identically: 

~G ~B = o (8) 

where G ~/~ 1"~fl76(2 is the dual tensor. Note that in (5), the minimum of 
V occurs at 4 = 4 0 > 0 ,  causing spontaneous breakdown of the 0(3) 
symmetry of the 4a-field. Equation (2) is a dynamical equation which 
governs the magnitude of the 4~-field and not its direction. 

For soliton solutions which are localized field configurations of finite 
energy, we should obviously have 4 ~ 4o in the background region (i.e., 
r ~ ~) .  The total charge of the configuration is quantized (Arafune et al., 
1975) 

l f jO f *. s 4 4 ~ , , o ,  b a c d3x 
Q c c 

~ %qb,. [4 4 Ca]d~x 
C J 

C 

2x4a f da ,,e (9) 
C 

where e = 8r&43/c is defined as the fundamental charge. Here, da t is the 
surface element in the x i direction, which is integrated over the surface area 
of a coordinate sphere S 2 at infinity, while df~ is the element of solid angle 
in the internal 4"  space, n is called the winding number (or Brouwer degree 
of mapping) and is interpreted topologically as the number of times that 
the vector 4 ~ sweeps the sphere of radius 4 = 4o in the (4 l, 42, 4 3) space 
as the radius vector r sweeps the large sphere of radius r = R--* oo in the 
coordinate space (x 1, x 2, x3). In other words, there is a mapping 

S2(coordinate space) ~ S2(field space) (10) 

which forms a second homotopy group n2(S 2) = Z. 

3. SPHERICAL SOLITONS 

In this section, we present spherically symmetric, soliton solutions of 
equations (I) and (2) in the form B~= (~/(r), 0) and 4a=  4 ( r ) r a / r .  Using 



1~0 ~a~ 

this ansatz in equations (1), (2), and (6), we get (after straightforward 
calculation) 

jo = cp = 6x ~b'(r)~b 2(r) 
r2 (11) 

1 d ( d~k(r)'~= 4Xjo (12) 
r2 dr rE dr ] - c  

1 d ( d t k )  _62(~b_~bo)5 (13) 
r2dr  r2d~- r = 

With slight modifications, equation (13) is Emden's  equation (Weinberg, 
1972) with the polytropic index n = 5, or ? = 6/5. Let us define E(r)= 
-de~dr .  Then the following solutions satisfy equations (13) and (12): 

[ / ,,2 3 ~b(r) = ~bo[1-_ t l + ~ j  j (14) 

- - ~ -  r ~ = r 2  (15) 

Inserting (14) into (13), we find that this equation is satisfied if 

1 
ro 2 = 22~b g (16) 

Equation (13) has other solutions with arbitrary r0, but (14) is the only 
solution which gives ~b(r = 0) = 0. q~ should vanish at r = 0 if the ~b a is to 
be single-valued. 

Solutions (14) and (15) correspond to n = 1 in (9). The total charge 
can also be calculated directly from 

Q = f p d a  x 6x foo +,~b 2 8nxtbo a 
=-C-Jo - - ~  4r+rZ dr - -  - (17) 

From (14) and (15), the configuration behaves like a point charge e, and 
E(r) obeys an almost inverse square law. The asymptotic behavior of the 
soliton solution is as follows: 

E(r) - (18) 
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for r >> ro, and 

  o(ry ~(r)~ \r0/ 

e (~o)4 E(r) ~- ~ (19) 

for r ,~ r o. The configuration is everywhere nonsingular. 
The moving soliton solutions can be easily obtained from the static 

solutions (14) and (15) by applying a Lorentz boost. 

4. E N E R G Y  C O N S I D E R A T I O N S  A N D  S T A B I L I T Y  

We did not derive the basic equations (1) and (2) from a Lagrangian 
density through the variational principle. We cannot, therefore, calculate 
formally the complete energy-momentum tensor of the fields concerned. 
However, we tentatively consider the following energy terms: 

= gl + g2 + 83 (20) 

where 

and 

fo ~176 1 I1 e2 
81 = -~  E2(r)4nr 2 dr - (21) 

ro 

f;, r = ~ = I 2 ~ r o  (22) 

fo ~ 1 83 = 2(~b - ~bo)64nr 2 dr = 132q~6r 3 = ~ I3~p2ro (23) 

where II, 12, and 13 are three definite integrals 

1 'oo [1 -- (1 + x 2) --1/216 315 
11 = ~  x2 dx = 31 - -~-- n 

"oo X 4 d x  3n a 
12 = 2~  0 (1 +X2) 3 8 

"*c~ X 2 d x  7r, 2 
13 = 4n - (24) 

o (1 +x2 )  3 4 

The total energy thus obtained is obviously positive definite and finite. As 
a function of  to, g(r0) has an absolute minimum at 

[(12+121,13,~q~2e2)'/2--I2] '/2 
roo = - 6132~b4 (25) 
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roo is always greater than zero and does not necessarily coincide with the 
previously determined ro of (16) unless there is a fine-tuning relationship 
among the three parameters ~o, 2, and e: 

2r 2 _ 2 12 (26) 
3 I~ 

From a topological point of view, the stability of  the configuration is due 
to the fact that the boundary condition c ~ ( r  ~ 0 0 ) ~ C ~ o r a / r  cannot be 
continuously deformed to a trivial boundary condition like ~ba~ C, where 
C is a constant vector in the (r r tp3) space. 

5. CONCLUSION 

We have presented scalar-vector field equations which admit soliton 
solutions with quantized topological charges. Spherically symmetric, static 
solutions corresponding to n = 1 were derived analytically and the scale of 
the configuration was shown to be determined by boundary conditions at 
r = 0. The soliton resembles a singularity-free charged particle of finite 
mass. 

In principle, by relaxing the spherical symmetry assumption and 
letting ~b(r, 0), A(r, 0), and ~(r, 0) depend on 0, hypothetical models of  
charged particles possessing spin can be constructed. 

Obviously, the transformation C a ,  _ Ca leads to Q --, - Q ,  r ---' r 
E(r ) ~ --E(r) ,  and # --, ~. This means that for each soliton solution there is 
a corresponding antisoliton solution with the same energy but opposite 
charge. The plane wave ansatz 

r  = ~"~Poeik ,  x~ and B ~ = B ~ e i k ,  xu 

yields 

J ~  = - - i x e ~ y e , , b , . k ~ k ~ k ~ " r 1 6 2  " = 0 and k~ f l~  = k ~ k  ~ = 0 

Therefore, homogeneous wave equations like those in classical electrody- 
namics could be obtained for the components of G ~a. This shows that the 
scalar-vector waves propagate with the speed of light in vacuum. 
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